
Extending	a	CICS	Web	application	using	JCICS	

This	course	provides	Java	application	developers	with	a	guide	to	CICS	services,	demonstrating	how	to	
access	them	using	the	JCICS	API.	Topics	covered	include:	

• Fundamentals	of	using	the	JCICS	API	
• Using	JZOS	to	map	native	record-based	language	structures	to	Java	data	types	
• Communicating	with	other	CICS	programs	using	a	COMMAREA	
• LINKing	to	a	Java	application	deployed	in	Liberty	
• Accessing	CICS	resources,	for	example	VSAM	and	temporary	storage	queues	
• Managing	unit	of	work	scope	in	Java	
• Handling	errors	in	Java	

Students	should	be	familiar	with	the	concepts	and	techniques	discussed	in	"Developing	a	RESTful	
Web	application	for	Liberty	in	CICS"	before	taking	this	course.	

	

http://www.redbooks.ibm.com/abstracts/crse0302.html?Open	

	

	

	

	 	



Section	1	Lecture	1	
Hello	and	welcome	to	the	CICS	Java	course	to	extend	a	CICS	web	application	using	the	JCICS	API.	My	
name	is	Ian	Burnett	and	I’m	part	of	the	CICS	development	team,	based	in	the	IBM	Hursley	lab	in	the	
UK.	

This	course	will	show	you	how	to	extend	your	knowledge	of	Java	development	in	CICS,	in	order	to	
produce	feature-rich	applications	that	use	a	range	of	CICS	features.	

We	will	build	upon	knowledge	gained	in	the	“Developing	a	RESTful	Web	application	for	Liberty	in	
CICS”	course,	and	use	your	existing	development	environment	to	produce	more	complex	Java	
applications.	

We	will	start	the	course	by	looking	at	the	fundamental	concepts	you	need	to	understand	as	a	Java	
developer	when	interacting	with	CICS.	Using	these	fundamentals,	we	will	create	a	simple	piece	of	
code	to	invoke	CICS	programs	from	the	Liberty	environment.		

After	we	have	understood	the	principles	of	invoking	other	CICS	programs	to	manipulate	data,	we	will	
look	at	several	resources	available	in	CICS	and	study	the	APIs	used	to	interact	with	those	resources	
directly	from	Java.	

Another	aspect	of	CICS	applications	is	that	they	adhere	to	the	ACID	properties	of	a	transaction,	and	
the	ability	to	delineate	resource	updates	into	units	of	work	is	also	available	to	Java	applications.	We	
will	look	at	how	CICS	provides	unit-of-work	support,	and	also	how	that	fits	with	the	JCICS	API.	

Developing	applications	that	are	enterprise-ready,	requires	robust	programming	practices	to	
gracefully	handle	application	and	system	errors.	Our	final	topic	will	be	to	cover	the	concepts	and	
practicalities	of	handling	error	conditions	using	Java.		

Our	code	samples	are	available	from	the	CICSdev	Github	repository	and	provide	fully-working	
examples	of	using	the	JCICS	APIs	that	we	will	be	discussing,	along	with	additional	supporting	
material.	

The	repository	shown	contains	many	Java	source	files	that	use	the	JAX-RS	interface,	in	order	to	
provide	a	simple	mechanism	of	invoking	Java	code	in	a	CICS	environment.	All	the	examples	use	the	
HTTP	GET	verb,	and	return	JSON	data.	RESTful	applications	would	typically	use	a	variety	of	HTTP	
verbs,	however	the	sample	code	is	not	intended	as	a	reference	for	the	development	of	RESTful	
applications,	but	merely	to	allow	easy	testing	using	a	simple	web	browser.	

During	this	course,	we	will	assume	that	you	have	a	Liberty	JVM	server	running	in	CICS.	The	sample	
code	provided	requires	use	of	facilities	defined	by	the	JAX-RS	specification,	therefore	your	Liberty	
server.xml	file	should	be	configured	to	include	this	feature.	

We	will	also	assume	your	workstation	is	configured	with	a	development	environment	that	contains	
the	necessary	JCICS	Java	libraries.	A	dynamic	web	project	is	sufficient	to	package	the	code	samples,	
and	for	simplicity,	the	Liberty	drop-ins	directory	can	be	used	for	deployment,	although	CICS	bundles	
may	be	used	if	required.	

Refer	to	the	“Developing	a	RESTful	Web	application	for	Liberty	in	CICS”	course	if	you	need	further	
information	on	configuring	Java	in	your	CICS	environment.	

Thank-you	for	watching	this	course.	



Section	2	Lecture	1	
The	ability	for	programs	written	in	different	languages	to	communicate	and	share	resources	whilst	
running	as	a	single	task	is	a	key	strength	of	CICS.	As	we	discussed	in	a	previous	course	the	interface	
to	a	CICS	program	is	defined	using	either	a	COMMAREA,	or	Channels	and	Containers.	

Different	languages	define	the	layout	of	the	COMMAREA	or	container	using	language	specific	
structures.			

The	C	language	allows	fields	to	be	defined	with	data	types	such	as	characters,	integers	and	floating	
points.	

COBOL	programs	define	storage	layout	using	fields,	represented	by	picture	clauses,	to	specify	the	
different	numeric	and	character	data	types.			

Usually	these	language	structures	are	separated	out	into	a	source	file	referred	to	as	a	copybook	in	
COBOL,	or	as	a	header	file	in	the	C	language.		In	practical	terms,	a	copy	book	often	represents	an	
entity	such	as	an	employee	or	a	stock	item.	

As	well	as	describing	interfaces,	a	language	structure	can	also	be	used	to	describe	the	layout	of	data	
stored	in	sequential	records	such	as	VSAM	files	or	Temporary	Storage	Queues.	

To	interface	with	existing	programs	from	Java	we	need	a	means	of	accessing	data	within	structured	
records.	

When	using	the	JCICS	API	to	link	to	a	CICS	program	COMMAREA	data	is	passed	as	a	byte	array.		

Using	the	standard	Java	language	constructs,	it	is	possible	to	construct,	populate,	and	read	from	this	
byte	array	directly.	However,	there	are	several	problems	with	this	approach.	

Firstly,	manual	byte	array	manipulation	is	time	consuming	to	develop	and	error	prone.	

Secondly,	a	record	may	contain	an	element	in	a	format	that	is	not	natively	supported	by	the	
standard	Java	libraries.	For	example,	packed	decimal	fields	are	common	on	z/OS,	but	have	no	Java	
data	type	equivalent.	

Finally,	manipulation	of	individual	bytes	within	a	byte	array	does	not	fit	very	well	with	the	object-
oriented	programming	model	of	Java.	

The	solution	to	these	problems	is	to	generate	a	Java	bean	from	the	copybook	with	accessor	methods	
which	get	and	set	the	fields	automatically	converting	data	as	required.		

The	generated	bean	provides	a	mapping	between	the	object-oriented	Java	programming	model,	and	
the	record	orientated	programming	model.		

We	will	cover	the	generation	of	these	beans	in	a	following	lecture.	

During	this	course,	it	will	be	useful	to	use	a	sample	copybook	to	demonstrate	how	and	where	byte	
arrays	are	used	in	the	JCICS	API.		

The	sample	materials	provide	an	example	COBOL	copybook	that	defines	several	fields	in	an	80-byte	
record.		

The	record	represents	an	entry	in	a	stock	warehouse.	In	our	application,	a	file	is	used	to	hold	
thousands	of	these	records,	representing	the	total	stock	inventory	for	a	warehouse.	



As	we	explore	the	JCICS	API	in	this	course,	we	will	be	using	the	sample	record	to	demonstrate	
communication	between	various	application	components.		

Looking	in	more	detail	at	the	80-byte	record	defined	in	the	sample,	we	can	see	several	fields.	

Firstly,	an	8-byte	field	is	used	as	the	part	ID,	it	represents	the	unique	key	for	this	record	within	the	
stock	database.	No	two	parts	within	the	database	have	the	same	part	ID.	

A	second	8-byte	field	is	used	to	represent	the	ID	of	the	supplier	of	that	part.	This	would	likely	
reference	an	entry	in	another	file,	which	contained	a	list	of	all	the	suppliers	used.	

Each	part	has	a	unit	price,	that	is	defined	using	the	packed	decimal	format.	

Two	dates	are	stored	in	the	record	–	the	last	time	an	order	was	placed,	and	the	next	time	an	order	
will	be	placed	for	this	part.	

A	numeric	field	contains	information	about	the	number	of	these	parts	that	are	currently	held	in	the	
warehouse.	

Finally,	a	description	of	this	part	is	stored	in	the	second	half	of	the	record	in	text	format.	

The	supporting	material	contains	another	sample	copybook	to	represent	a	supplier.	This	will	be	
useful	later	when	demonstrating	cases	where	relationships	exist	between	records.	

In	the	next	lecture,	we	will	look	at	the	JZOS	toolkit	and	how	the	record	generator	component	can	be	
used	to	map	from	our	sample	COBOL	copybook	to	an	object-oriented	Java	class.	

	 	



Section	2	Lecture	2	
Java	records	are	used	to	map	native	record	based	language	structures	to	Java	data	types.		IBM	
supplies	two	Java	record	generation	tools.	

One	option	is	the	J2C	record	importer	provided	with	IBM	Developer	for	z	Systems	Enterprise	Edition	
within	the	J2C	feature.	

The	other	option	is	the	JZOS	Record	Generator	which	we	will	describe	in	this	course.	

The	JZOS	record	generator	creates	a	Java	class,	based	on	a	copybook	from	COBOL	or	a	DSECT	from	
assembler.	In	our	example,	we	will	generate	a	Java	class	from	the	stock	part	copybook	that	we	
looked	at	in	the	previous	lecture.	Generating	a	Java	record	is	a	two-stage	process.	

The	first	stage	is	to	compile	the	COBOL	program	specifying	the	ADATA	parameter	to	generate	the	
ADATA	file.	

The	second	stage	is	to	run	the	JZOS	record	generator	using	the	ADATA	file	as	input,	to	generate	a	
Java	source	file	

The	Java	source	file	can	be	included	in	a	java	project	or	can	be	compiled	directly	into	a	Java	library.	

Including	the	generated	Java	source	file	in	the	Java	application	project	is	useful	when	the	generated	
code	needs	further	customization	such	as	changing	encodings	for	specific	fields.	To	do	that	requires	
importing	the	generated	Java	source	file	into	your	Eclipse	development	environment,	and	then	
adding	the	JZOS	library	to	the	project	build	path.	However,	if	the	COBOL	copybook	changes	and	
record	needs	to	be	regenerated	-	this	will	require	development	effort	to	update	the	source	in	the	
Eclipse	development	environment.		

An	alternative	approach	is	to	compile	the	generated	source	file	and	package	it	into	a	Java	archive,	or	
jar	file,	which	can	be	included	with	the	Java	application.	This	use	of	a	compiled	jar	file	avoids	the	
requirement	to	add	the	JZOS	libraries	to	the	Eclipse	workspace	and	allows	multiple	records	to	be	
packaged	within	a	single	library.	Another	advantage	of	this	approach	is	that	it	can	be	automated	and	
the	JAR	file	placed	in	a	repository	for	dependency	management.	

The	sample	application	that	accompanies	this	course	follows	the	“compile	and	JAR”	approach.	It	
supplies	a	library	jar	file	containing	a	compiled	record	class	that	corresponds	to	the	stock	part	
copybook.	

In	this	section,	we	have	looked	at	how	the	interface	to	CICS	programs	can	be	defined,	and	how	Java	
applications	can	use	record	generators	to	map	to	this	interface.	We	then	showed	how	the	JZOS	
record	generator	could	be	used	to	build	a	Java	record	from	the	compiler	ADATA.	Finally,	we	showed	
how	to	package	the	Java	record	into	a	library	for	distribution	to	developers.	

In	the	next	section,	we	will	look	at	using	this	generated	record	when	linking	to	a	CICS	COBOL	
program	from	a	Java	application.		

For	more	details	on	these	steps,	including	a	worked	example	with	complete	JCL,	have	a	look	at	the	
“Building	Java	records	from	COBOL	with	IBM	JZOS”	on	the	CICS	developer	center.	

Thank	you	for	watching.	

	 	



Section	3	Lecture	1	
In	the	“Developing	a	RESTful	Web	application	for	Liberty	in	CICS”	course,	we	looked	at	the	concept	
of	a	CICS	program.	

A	program	is	a	unit	of	compiled	code	that	provides	application	logic,	and	can	be	developed	using	one	
of	many	languages	supported	in	the	CICS	environment,	including	Java.			

The	terminology	used	when	calling	from	one	CICS	program	to	another	is	known	as	a	link.	The	link	
command	passes	control	to	the	target	program	and	waits	for	it	to	complete.	

A	link	differs	from	a	Java	method	call	in	that	the	target	program	can	be	implemented	in	any	language	
supported	by	CICS	and	can	also	reside	on	a	different	CICS	system.		

A	Java	method	call	however	is	considerably	more	lightweight	than	a	link	command	

When	using	the	JCICS	API,	first	create	an	instance	of	the	Program	class,	and	specify	the	name	of	the	
target	program	using	the	setName()	method.		

To	issue	the	link	simply	invoke	the	link	method	on	the	program	object.		Here	we	do	not	pass	any	
arguments	on	the	link	method	so	no	data	is	passed	to	the	target	program.	

When	communicating	from	one	program	to	another,	there	are	two	main	ways	to	pass	data	---	either	
through	the	use	of	a	commarea	-	or	through	the	use	of	channels	and	containers.		

Now	let’s	look	at	passing	a	commarea	on	a	link	command	

A	commarea	is	an	area	of	memory	used	to	pass	data	between	two	programs.		

From	a	CICS	perspective,	a	commarea	is	just	a	sequence	of	bytes,	CICS	does	not	attempt	to	format	
the	data	structure	and	just	facilitates	the	transfer	of	the	data	between	the	programs.		

The	data	structure	is	described	using	an	interface,	where	the	fields	are	defined	using	a	language	
specific	structure	such	as	a	COBOL	copybook	as	we	discussed	in	the	previous	lecture.		

For	a	Java	application	to	communicate	with	an	application	written	in	another	language	we	can	use	a	
byte	array	to	represent	the	commarea	and	to	hold	the	data	to	be	transferred.	As	noted	in	the	
previous	section,	generated	Java	classes	can	be	used	to	more	easily	construct	the	required	byte	
array.	

In	this	example,	we	look	at	passing	a	single	record	from	our	Java	application	into	an	existing	CICS	
program	using	the	COMMAREA	interface.	This	record	is	defined	by	the	standard	stock	part	record	
format	covered	earlier.	

When	using	the	JZOS	record	generator	tooling,	we	called	our	generated	class	“StockPart”.	So,	our	
first	task	is	to	create	an	instance	of	this	class,	and	populate	it	with	relevant	data.	

The	JZOS	record	generator	tooling	defines	getter	and	setter	methods	in	the	Java	class,	the	names	of	
these	methods	correspond	to	the	fields	of	the	original	COBOL	copybook.	

Getter	and	Setter	methods,	otherwise	known	as	“accessor”	methods,	allow	a	Java	developer	to	use	
an	object-oriented	approach	when	building	a	record.	

	



Once	the	Java	object	has	been	instantiated,	we	can	convert	it	into	a	byte	array	using	the	
getByteBuffer()	method.	This	returns	a	serialized	version	of	the	structured	record	defined	in	the	
original	copybook.	

Now	that	we	have	the	data	ready,	we	can	use	this	to	link	to	the	target	program.	

We	create	a	new	instance	of	the	Program	class,	and	specify	the	name	of	the	target	program	that	we	
wish	to	LINK	to	using	the	setName()	method.		

We	then	invoke	the	link	method	on	our	program	object	-	this	time	passing	the	StockPart	byte	array		

On	successful	return	from	the	target	program,	any	updates	to	the	commarea	will	be	reflected	in	the	
byte	array.		

Here,	we	take	the	updated	byte	array	and	construct	a	new	StockPart	object	to	represent	the	
returned	data.	Subsequent	code	may	then	read	values	from	this	newly-constructed	object	using	the	
accessor	methods.	

A	commarea	is	a	bidirectional	transfer	mechanism,	and	programs	can	use	this	area	to	send	any	
format	of	data	in	either	direction.	Our	previous	example	sent	a	record	in	the	StockPart	format,	and	
received	a	record	in	the	same	format.	

	With	a	large	enough	data	area,	any	record	format	can	be	returned.	

In	this	example,	we	use	a	StockPart	object	to	construct	a	byte	array	that	will	be	passed	to	a	target	
program.	When	called,	that	program	will	look	up	the	supplier	record	and	populate	the	commarea	
with	a	record	format	detailing	the	supplier	of	that	part.	

Having	previously	created	a	suitable	JZOS	class	to	map	the	record	for	a	supplier	-	when	the	link	
method	completes	-	we	can	generate	a	new	instance	of	the	supplier	object	from	the	returned	byte	
array.	The	resulting	object	can	be	queried	for	the	supplier	information.	

CICS	offers	an	optimization	on	a	link	command	by	specifying	the	size	of	the	data	to	the	target	
program	-	a	benefit	also	available	from	the	JCICS	API.		

As	an	example,	a	part	lookup	routine	may	only	need	a	8-byte	part	number	as	input,	but	will	require	
an	80-byte	commarea	to	return	the	data.	Specifying	the	optional	int	parameter	after	the	byte	array	
allows	the	caller	to	specify	the	data	length	used	on	the	send.	

In	this	example,	a	byte	array	of	length	80	is	created	by	the	calling	program,	but	the	datalength	is	
specified	as	8.	When	CICS	passes	control	to	the	target	program,	only	the	first	8	bytes	are	
transmitted.	The	remainder	of	the	80-byte	commarea	is	padded	with	zeroes.	When	the	target	
program	returns,	all	80-bytes	are	sent	back	to	the	calling	program.	

This	optimization	can	be	used	to	reduce	CPU	and	response	times,	especially	where	large	commareas	
are	required	for	return	values	or	where	links	flow	between	CICS	systems.	

Recall	that	the	other	method	of	passing	data	from	one	program	to	another	is	by	Channels	and	
Containers.	A	channel	is	a	conduit	between	programs,	it	typically	holds	one	or	more	containers	to	be	
passed	between	the	programs.	A	container	is	a	named	block	of	data.	

Channels	and	containers	offer	the	advantage	that	more	than	32	KB	of	data	can	be	passed.	By	
contrast,	commareas	are	confined	to	a	32	KB	limit.	

	



Multiple	containers	can	be	passed	between	programs	within	a	channel.	A	channel	is	therefore	
analogous	to	a	parameter	list.	

A	worked	example	of	using	channels	and	containers	in	JCICS	is	available	in	the	“Developing	a	RESTful	
Web	application	for	Liberty	in	CICS”	course.	The	sample	materials	for	this	course	also	contain	an	
example	of	using	channels	and	containers	to	pass	data.	

This	lecture	has	looked	at	the	ways	in	which	the	JCICS	API	can	be	used	to	LINK	to	another	CICS	
program.	

The	sample	source	code	provided	with	this	course	has	examples	of	all	the	JCICS	commands	covered	
in	this	lecture.		

The	next	lecture	will	look	at	how	we	can	link	from	a	CICS	program	into	a	Java	component	in	a	Liberty	
JVM	server	

	 	



Section	3	Lecture	2	
WebSphere	Liberty	provides	a	Java	Enterprise	Edition	or	Java	EE	platform,	and	is	designed	to	help	
developers	create	large-scale	enterprise	applications.	

Using	Link	to	Liberty,	any	CICS	program	can	now	call	Java	EE	applications	in	a	Liberty	JVM	server.		

The	CICS	LINK	command	can	invoke	Plain	Old	Java	Objects	(POJOs)	that	have	been	deployed	inside	a	
Web	application...just	as	if	they	were	any	CICS	program.		

To	achieve	this	seamless	LINK,	a	CICS	defined	Java	annotation	is	applied	to	a	Java	method	within	the	
Liberty	application.	The	annotation	indicates	that	the	method	should	be	exposed	as	the	entry	point	
for	a	CICS	Java	program	

When	the	application	is	installed	CICS	will	detect	the	annotation	meta-data	and	automatically	create	
and	install	a	PROGRAM	resource	for	each	entry	point	detected.	

Once	these	PROGRAM	resources	have	been	created,	then	a	CICS	application	written	in	any	language	
can	use	the	LINK	command	and	invoke	the	desired	Java	method	passing	a	channel	as	the	interface.	
Note	that	a	commarea	cannot	be	passed	in	this	scenario.	

In	this	example,	we	have	a	class	or	POJO	in	a	Web	application	that	exposes	the	getSupplierInfo()	
method	as	an	entry	point.	The	@CICSProgram	annotation	is	used	to	indicate	this	method	should	be	
made	available	as	a	PROGRAM	resource.	When	the	application	is	installed,	a	CICS	program	resource	
named	GETSUPPL	is	automatically	created,	and	is	ready	to	be	invoked.	

Data	is	passed	between	calling	program	and	the	Liberty	application	using	Channels	and	Containers.		

Within	the	target	Java	method,	JCICS	is	used	to	get	a	reference	to	the	current	channel	and	to	obtain	
the	data	from	containers	provided	by	the	caller.	

Our	sample	code	provides	a	complete	implementation	of	the	get	supplier	info	method.	The	sample	
code	could	be	extended	to	use	Java	EE	capabilities	such	as	JAX-RS	client	API	to	request	information	
from	a	supplier	using	a	remote,	RESTful	web	service.		

From	the	perspective	of	the	calling	COBOL	application,	it	has	used	the	CICS	LINK	command	to	invoke	
a	named	program	passing	in	data	via	a	container,	and	received	a	response	using	a	COBOL	structure.		

The	POJO	component	in	the	web	application	was	able	to	receive	and	process	the	containers	and	
exploit	Java	EE7	functionality.	

In	this	section,	we	have	looked	at	how	we	can	link	to	other	CICS	programs	using	methods	on	the	
JCICS	Program	class.		

Using	our	generated	record,	we	passed	data	to	existing	CICS	applications	using	the	commarea	
interface.	The	alternative	method	of	passing	data	between	programs	-	the	CICS	channels	and	
containers	support	-	was	covered	in	the	“Developing	a	RESTful	Web	application	for	Liberty	in	CICS”	
course.	

Finally,	we	looked	at	how	CICS	can	make	Liberty	applications	available	to	traditional	programs,	using	
the	Link	to	Liberty	capability.	

In	the	next	section,	we	will	look	at	how	to	access	other	CICS	resources	using	the	JCICS	API.	

	 	



Section	4	Lecture	1	
CICS	provides	access	to	a	range	of	resource	types.	Some	of	these	resources	like	Temporary	Storage	
Queues	are	unique	to	CICS,	while	others	such	as	VSAM	files	are	common	across	z/OS.	In	this	section,	
we	will	be	looking	at	accessing	these	resources	using	the	JCICS	API.	

We'll	come	to	the	CICS-specific	resources	shortly,	but	first	let’s	start	with	VSAM	files.	

In	CICS,	data	management	services	are	traditionally	known	as	CICS	file	control.	CICS	file	control	
offers	you	access	to	data	sets	that	are	managed	by	the	Virtual	Storage	Access	Method,	or	VSAM.	

Basic	direct-access	method,	or	BDAM,	data	sets	are	not	supported	by	the	JCICS	API,	so	this	lecture	
will	focus	on	VSAM	files.	

CICS	file	control	lets	you	read,	update,	add,	delete,	and	browse	data	in	VSAM	data	sets.	You	can	also	
access	CICS	shared	data	tables	and	coupling	facility	data	tables	using	the	file	control	APIs.		

Files	may	be	shared	by	applications	within	a	CICS	region,	or	across	the	wider	z/OS	sysplex.	

A	CICS	application	program	reads	and	writes	its	data	in	the	form	of	individual	records.	Each	read	or	
write	request	is	made	by	a	CICS	command.		

To	access	a	record,	the	application	program	must	identify	both	the	record	and	the	data	set	that	
holds	it.	

There	are	several	methods	that	can	be	used	to	identify	a	record	–	which	one	to	use	depends	on	the	
type	of	VSAM	file	in	use.	We	will	look	at	the	different	types	of	VSAM	file	later.	

An	application	uses	a	CICS	file	resource	to	identify	a	data	set.	This	file	resource	has	a	unique	name	
within	the	CICS	region,	allowing	the	application	to	remain	agnostic	of	the	underlying	dataset	name.	

It	is	not	necessary	for	an	application	to	open	or	close	a	file	explicitly,	CICS	manages	the	resource	on	
behalf	of	all	applications.	

In	this	diagram,	an	application	accesses	a	VSAM	file	using	CICS	file	control.	

The	application	identifies	the	data	set	to	be	used	by	referencing	the	CICS	FILE	resource	named	
STOCK1.	

The	STOCK1	file	resource	is	defined	to	reference	the	MVS	dataset	TEST	dot	DATA	dot	STOCK.	

The	application	could	later	be	deployed	into	a	different	system,	where	a	file	resource	of	the	same	
name	references	a	different	MVS	dataset.	

CICS	supports	access	to	the	following	types	of	VSAM	data	set:	

• Key-sequenced	data	set,	or	KSDS	
• Entry-sequenced	data	set,	or	ESDS	
• and	Relative	record	data	set,	or	RRDS	

A	key-sequenced	data	set	has	each	of	its	records	identified	by	a	key.	The	key	of	each	record	is	a	field	
in	a	predefined	position	within	the	record.	Each	key	must	be	unique	in	the	data	set.	

An	entry-sequenced	data	set	is	one	in	which	each	record	is	identified	by	its	relative	byte	address	or	
offset.	

A	relative	record	data	set	has	records	that	are	identified	by	their	relative	record	number	or	order.	



The	VSAM	datasets	topic	in	the	IBM	Knowledge	Center	has	a	more	comprehensive	description	of	
these	different	VSAM	data	sets.	

Our	example	will	use	a	key-sequenced	data	set.		

Before	we	can	use	VSAM	files,	we	need	to	define	the	dataset	using	the	z/OS	utility	IDCAMS.	

The	example	shows	some	sample	input	to	the	IDCAMS	utility	to	define	a	VSAM	file	named	
TEST.DATA.STOCK.	We	will	use	this	dataset	in	our	example	to	store	stock	information	from	the	
StockPart	record	we	generated	using	JZOS	earlier.	

The	records	keyword	indicates	the	amount	of	space	that	the	disk	subsystem	needs	to	reserve	for	the	
data	set,	while	the	INDEXED	keyword	specifies	the	VSAM	data	set	is	to	be	used	for	key-sequenced	
data.	

The	KEYS	keyword	specifies	that	each	record	has	a	unique	key	that	is	eight	bytes	in	length	and	begins	
at	offset	zero.	This	matches	the	STOCK	PART	record	we	defined	earlier.	

Finally,	the	RECORDSIZE	keyword	specifies	that	on	average,	each	record	will	be	eighty	bytes	in	
length,	with	a	maximum	length	of	eighty	bytes.	While	VSAM	files	support	variable-length	records,	
our	simple	application	only	uses	fixed-length	records.	

For	the	full	example,	see	the	accompanying	sample	project	materials	in	Github.	

As	described	earlier,	a	CICS	application	is	abstracted	from	the	physical	datasets	it	uses	by	means	of	a	
CICS	FILE	resource.	In	order	to	use	our	sample	application,	you	will	need	to	define	and	install	a	FILE	
definition	into	the	CICS	region.	

For	this	example,	most	of	the	defaults	will	be	suitable,	with	some	exceptions.	

The	file	resource	definition	requires	a	name	of	up	to	eight	characters	–	the	sample	code	uses	the	
SMPLXMPL	name.		

If	you	do	not	specify	the	file	as	a	DD	statement	in	your	CICS	startup	job,	you	will	need	to	specify	the	
physical	dataset	name	using	the	DSNAME	attribute	on	the	definition.	

To	fully	demonstrate	the	JCICS	file	control	API,	you	should	set	all	of	the	add,	browse,	delete,	read,	
and	update	attributes	to	yes,	otherwise	CICS	will	throw	an	exception	when	the	application	attempts	
to	perform	an	operation	that	is	not	permitted.	

Now	we	are	going	to	develop	the	web	application	to	access	the	VSAM	file.	

The	sample	class	VSAM	KSDS	file	resource	provides	a	number	of	methods	to	demonstrate	the	
various	aspects	of	accessing	a	VSAM	file.	

The	simplest	of	these	methods	is	the	“write	new	record”	method	which	creates	a	new	stock	part	and	
adds	it	to	the	VSAM	file.	

As	with	the	examples	in	the	“Developing	a	RESTful	Web	application	for	Liberty	in	CICS”	course,	we	
use	a	simple	RESTful	interface	to	invoke	the	Java	code.	

The	CICSApplication	class	specifies	a	base	application	path	of	“rest”,	therefore	any	RESTful	resources	
accessed	in	this	web	application	will	use	this	string	as	a	root	URI.	



The	VSAM	KSDS	file	resource	class	specifies	a	relative	resource	URI	of	ksds	using	the	Path	
annotation,	while	the	write	new	record	method	specifies	a	path	of	“write”	relative	to	the	parent	
resource.	

For	the	write	new	record	method,	we	would	therefore	use	the	URI	“rest/ksds/write”	relative	to	the	
base	URI	of	the	application	when	installed	into	CICS.	

Only	the	HTTP	GET	verb	is	recognized	in	this	application,	as	indicated	by	the	GET	annotation	on	the	
method.	

The	write	new	record	method	returns	a	Stock	Part	Collection	object,	which	is	serialized	to	JSON	as	
directed	by	the	Produces	annotation	on	the	class.	The	Stock	Part	Collection	object	is	a	simple	
wrapper	object	that	contains	a	list	of	Stock	Part	objects.	

To	create	a	record	suitable	for	insertion	into	the	VSAM	file,	the	generate	method	in	the	stock	part	
helper	class	creates	an	instance	of	the	JZOS-generated	Stock	Part	class	and	populates	it	with	sample	
data.	

The	write	new	record	method	takes	the	generated	record	and	converts	this	to	a	byte	array	using	the	
JZOS	get	byte	buffer	method.	

Another	method	in	the	stock	part	helper	class	extracts	the	record	key	as	a	byte	array.	Recall	that	the	
key	for	the	stock	part	record	is	eight	bytes	in	length	and	begins	at	offset	zero.	The	helper	class	
obtains	the	byte	array	from	the	Stock	Part	object	and	extracts	the	first	eight	bytes	as	a	new	byte	
array.	

In	this	example,	we	are	accessing	a	key-sequenced	dataset,	or	KSDS	file.		To	reference	this	file	using	
JCICS,	we	create	an	instance	of	the	KSDS	class	and	specify	the	name	of	the	CICS	file	resource.	

The	write	method	on	the	KSDS	class	takes	two	byte	arrays	as	parameters	–	the	key	and	the	record	
for	writing.	

The	CICS	transaction	would	automatically	be	committed	on	normal	completion	of	the	CICS	task,	but	
as	a	simple	demonstration	of	managing	units	of	work,	the	sample	application	uses	the	Task	commit	
method	to	explicitly	complete	the	current	unit	of	work.		

Finally,	the	query	file	method	is	invoked,	which	returns	an	instance	of	the	stock	part	collection	class.	

The	query	file	method	performs	a	file	browse	operation,	starting	at	the	very	first	record	in	the	file,	
and	reading	each	record	into	memory.	Each	record	is	converted	to	a	stock	part	object	and	added	to	
the	stock	part	collection	instance.	When	serialized	to	JSON,	this	provides	a	simple	means	of	viewing	
the	contents	of	the	sample	VSAM	file	and	how	it	is	affected	by	each	file	control	operation.	

For	clarity,	the	necessary	error-handling	logic	has	not	been	included	here,	but	is	provided	in	the	
sample	code.	We	will	cover	error-handling	later	in	the	course.	

The	updateRecord()	method	provides	an	example	of	updating	a	record	in	a	VSAM	file.	

Firstly,	the	KSDS	file	is	referenced	by	creating	a	new	instance	of	the	KSDS	class,	as	previously	done	in	
the	write	new	record	method.	

To	read	data	from	a	file,	a	record	holder	object	is	required.	The	read	for	update	method	on	the	KSDS	
class	is	then	called,	passing	in	three	parameters.	



The	first	parameter	is	the	key	of	the	record	that	we	wish	to	read	from	the	VSAM	file.	In	this	case,	we	
supply	a	key	of	all	zeroes,	created	using	a	method	in	the	stock	part	helper	class.	A	key	of	all	zeroes	is	
used	in	our	application,	simply	to	obtain	the	first	record	in	the	absence	of	real	data.	

The	second	parameter	specifies	that	the	application	will	read	the	record	with	a	key	equal	to,	or	
greater	than,	the	key	supplied.	

The	final	parameter	is	the	record	holder	instance,	which	will	be	used	to	receive	the	data	that	results	
from	the	VSAM	file	read	operation.	

On	successful	completion	of	the	read	for	update	method,	the	record	holder	instance	will	contain	a	
byte	array	representing	the	record	in	the	data	set,	as	located	by	the	specified	key.	The	get	value	
method	extracts	this	byte	array,	and	it	is	passed	to	the	constructor	of	the	generated	stock	part	class.	

A	second	stock	part	instance	is	created	using	the	generate	method	we	covered	earlier.	The	part	id,	
or	key,	from	the	read	record	is	copied	into	the	newly-generated	record.	This	step	is	used	as	a	simple	
demonstration	of	where	business	logic	would	amend	values	in	a	real-world	application.	

We	then	update	the	record	in	the	VSAM	file	by	calling	the	rewrite	method,	supplying	the	full	record	
as	a	byte	array.	

Note	that	for	a	rewrite	operation,	we	do	not	need	to	supply	the	key,	as	this	was	established	on	the	
previous	read	for	update	operation.	

Finally,	we	explicitly	call	the	task	commit	method	to	release	any	locks	we	hold	against	the	file.	

When	executing	the	sample	code,	repeatedly	accessing	the	rest/ksds/update	method	by	pressing	
refresh	in	your	browser	will	show	the	first	record	in	the	file	being	updated	with	new	sample	data.	

The	delete	record	method	in	the	VSAM	KSDS	file	resource	class	provides	an	example	of	deleting	a	
record	in	a	VSAM	file.	

The	flow	of	the	method	is	very	similar	to	the	update	record	example,	with	a	read	for	update	
operation	finding	the	correct	record,	and	then	the	delete	method	being	called	to	delete	the	record	
from	the	file.	

In	this	lecture,	we	have	looked	at	how	we	can	use	the	JCICS	API	to	access	VSAM	KSDS	files,	using	our	
generated	JZOS	class	to	provide	an	object-oriented	means	of	accessing	structured	records	on	disk.	
Many	of	the	concepts	covered	here	are	equally	applicable	to	ESDS	and	RRDS	files.	See	the	JCICS	
Javadoc	documentation	for	a	complete	reference	on	the	syntax	required	to	access	these	types	of	
VSAM	files.	

In	the	next	lecture,	we	will	look	at	how	Java	applications	can	access	CICS	temporary	storage	queues.	

	

	 	



Section	4	Lecture	2	

CICS	temporary	storage	queues,	or	TSQs,	are	a	means	of	storing	a	sequence	of	data	items.	

	

Data	in	a	TSQ	can	be	stored	in	main	memory,	on	disk,	known	as	auxiliary	TSQs,	or	shared	via	the	
sysplex	coupling	facility.	

	

The	data	items	in	a	TSQ		have	a	maximum	size	of	just	under	thirty	two	kilobytes,	and	can	be	accessed	
in	any	order	

	

TSQs	are	referenced	using	a	name	of	up	to	16	characters	in	length.		They	can	be	defined	as	being	
recoverable	or	non-recoverable	CICS	resources.	

	

Temporary	storage	queues	do	not	need	to	be	defined	in	advance	of	an	application	using	them,	and	
can	be	used	to	share	data	across	applications.	

	

Support	for	temporary	storage	queues	is	provided	in	the	JCICS	API	by	using	the	TSQ	class.	

In	our	sample	we	are	using	a	TSQ	from	within	a	CICS	Liberty	Web-application	and	because	HTTP	
requests	are	stateless,	we'll	need	some	means	of	persisting	the	TSQ	name	across	multiple	HTTP	
requests.	

	

To	provide	a	simple-to-use	method	of	accessing	the	same	temporary	storage	queue	from	a	browser	
across	multiple	requests,	the	queue	name	is	stored	in	an	HTTP	session	object.	

	

Every	time	a	browser	issues	a	GET	request	against	the	temporary	storage	resource	class,	the	get	
queue	method	extracts	the	queue	name	from	the	HTTP	session	object,	and	returns	a	JCICS	TSQ	
object	that	corresponds	to	the	correct	queue	for	that	browser	session.	

	

Examining	the	flow	in	more	detail,	the	first	time	a	browser	accesses	the	sample	application,	it	issues	
an	HTTP	GET	request	against	the	rest	slash	tsq	slash	write	URI,	and	has	no	cookie	token	to	send	to	
the	server.	The	get	queue	method	in	the	application	finds	no	cookie	has	been	sent,	and	hence	no	
HTTP	session	is	present.	

	

The	generate	queue	name	method	is	invoked	to	create	a	new,	unique	queue	name.	This	queue	
name	is	stored	in	an	HTTP	session	object,	which	is	persisted	automatically	by	the	Liberty	runtime.	

	



The	write	new	record	method	will	write	an	element	to	this	new	queue,	and	then	return	to	the	client.	
When	the	Liberty	container	sends	the	JSON	response	back	to	the	browser,	it	also	includes	an	HTTP	
session	cookie	as	part	of	the	flow.	

	

Subsequent	requests	from	the	browser	will	flow	this	HTTP	session	cookie	to	the	application,	and	this	
cookie	is	used	by	the	Liberty	server	as	a	key	to	retrieve	the	HTTP	session	object	that	corresponds	to	
the	browser	instance	making	the	request.	

	

Before	we	examine	the	JCICS	API	in	detail,	let’s	take	a	brief	look	at	some	of	the	sample	code’s	helper	
methods.	

	

The	name	of	the	queue	used	by	our	sample	application	is	created	by	the	generate	queue	name	
method.	This	creates	a	queue	name,	based	on	a	known	prefix	and	the	current	time.	

	

	

The	sample	temporary	storage	resource	class	provides	examples	of	accessing	a	TSQ	using	the	JCICS	
API,		

	

The	write	new	record	method	demonstrates	how	to	write	a	single	element	to	a	temporary	storage	
queue.		

	

Here	we	use	the	get	queue	method	to	obtain	an	instance	of	the	JCICS	TSQ	class.	

	

This	TSQ	object	references	the	CICS	temporary	storage	queue	that	is	in	use	by	the	current	browser	
session,	using	the	mechanism	described	earlier.	

	

A	sample	record	is	created	using	the	stock	part	helper	class	we	covered	when	looking	at	VSAM	file	
access,	and	a	byte	array	is	obtained	using	the	JZOS	get	byte	buffer	method.	

	

Writing	a	single	element	to	a	TSQ	is	achieved	by	simply	calling	the	write	item	method,	passing	the	
data	to	be	written	as	a	byte	array.	

	

In	a	similar	manner	to	the	VSAM	examples,	a	stock	part	collection	object	is	returned	by	the	method,	
and	is	serialised	by	the	Liberty	server	as	a	JSON	response.	

	



This	collection	object	is	created	by	the	query	queue	method,	which	performs	a	browse	across	the	
queue,	adding	each	queue	element	to	the	collection.	

	

There	are	two	important	points	to	note	from	the	query	queue	method.	

	

	The	first	is	that	elements	in	a	temporary	storage	queue	are	numbered	from	element	one,	unlike	
many	constructs	you	may	be	used	to	in	Java.	

	

The	second	is	that	items	are	read	from	a	TSQ	using	an	Item	Holder	instance.	This	item	holder	object	
performs	a	similar	function	to	the	record	holder	we	discussed	earlier	for	VSAM	files.	

As	in	the	previous	VSAM	example,	the	update	record	method	will	update	the	first	element	in	the	
queue.	

	

The	get	queue	method	is	again	used	to	obtain	the	TSQ	corresponding	to	the	current	browser	
session,	and	a	new	sample	stock	part	record	is	created	using	the	stock	part	helper	class.	

	

The	TSQ	is	updated	through	the	use	of	the	rewrite	item	method	in	the	TSQ	class,	which	takes	two	
parameters	–	the	item	index	and	the	new	data	to	write	to	the	queue.	

	

After	updating	the	queue,	our	query	queue	method	is	called	to	return	the	contents	of	the	queue	as	a	
JSON	response.	

Individual	elements	cannot	be	deleted	from	a	temporary	storage	queue	–	it	is	only	possible	to	delete	
an	entire	queue.	

	

The	delete	method	in	the	TSQ	class	takes	no	arguments	and	deletes	the	corresponding	temporary	
storage	queue.	

	

The	delete	queue	method	in	our	sample	code	gives	a	simple	example	of	obtaining	a	TSQ	object	and	
then	deleting	the	underlying	queue.	

	

In	this	lecture	we	have	covered	the	basic	concepts	of	a	temporary	storage	queue,	and	looked	at	how	
we	can	use	the	JCICS	API	to	access	these	queues	from	Java.	

	

Thank	you	for	watching.	

	



	

Section	4	Lecture	3	

One	of	the	fundamental	concepts	of	transaction	processing	is	that	resource	updates	adhere	to	the	
atomicity,	consistency,	isolation,	and	durability	principles,	commonly	known	as	the	ACID	properties	
of	a	transaction.	

	

Resources	accessed	by	a	program	are	managed	within	a	transactional	scope	known	as	a	unit	of	work.	
All	recoverable	resources	accessed	within	a	single	unit	of	work	are	updated	according	to	the	ACID	
principles.	

	

A	unit	of	work	may	either	complete	successfully,	known	as	a	commit,	or	unsuccessfully,	known	as	a	
roll	back.	

	

In	a	CICS	task,	an	active	unit	of	work	is	always	present.	

	

A	unit	of	work	begins	automatically	at	the	start	of	a	CICS	task,	before	control	is	passed	to	the	
application.	Upon	successful	completion	of	a	CICS	task,	the	unit	of	work	is	automatically	committed.	

	

If	a	CICS	task	terminates	abnormally,	then	the	active	unit	of	work	is	rolled-back	and	any	updates	to	
recoverable	resources	are	undone.	

	

Updates	to	recoverable	CICS	resources	made	from	Java	applications	will	be	subject	to	the	same	unit	
of	work	constraints	as	other	CICS	programs.	

It	is	also	possible	for	an	application	to	mange	the	unit	of	work	boundaries.	

	

The	JCICS	commit	and	rollback	methods	in	the	Task	class	can	be	used	to	complete	the	current	unit	of	
work	and	update	resources	accordingly.	

	

Once	the	current	unit	of	work	has	been	completed	in	CICS,	a	new	unit	of	work	is	automatically	
created,	ensuring	that	any	resource	updates	always	occur	within	a	unit	of	work.	

	

Where	large	numbers	of	resources	are	being	updated	in	long-running	tasks,	if	the	application	design	
permits,	it	is	recommended	that	units	of	work	are	committed	periodically.	This	will	reduce	the	
number	of	outstanding	locks	that	are	held	by	the	application,	and	potentially	improve	overall	system	
throughput.	

	



The	write	new	record	method	in	our	VSAM	sample	shows	an	example	of	explicitly	committing	the	
current	CICS	unit	of	work.	

In	this	section,	we	have	looked	at	the	characteristics	of	several	CICS	resources,	and	how	to	access	
them	using	the	JCICS	API.	

	

In	this	lecture	we	covered	the	CICS	support	for	units	of	work,	and	how	applications	can	control	the	
scope	of	updates	to	recoverable	resources.	

	

In	the	next	section,	we	will	look	at	how	Java	applications	can	successfully	handle	application	and	
system	errors,	in	order	to	produce	more	robust	applications.	

	

Our	sample	application	code	provides	examples	of	accessing	key-sequenced	VSAM	files,	CICS	
temporary	storage	queues,	and	also	CICS	transient	data	queues	using	JCICS.	

	

Thank	you	for	watching.	

	

Section	5	Lecture	1	

It	is	important	to	provide	good	error-handling	logic	in	enterprise-class	software	to	gracefully	handle	
a	range	of	application	and	system	problems.	

	

In	this	section,	we	will	look	at	how	Java	handles	errors	in	general,	then	apply	that	knowledge	to	the	
JCICS	API.	

	

During	execution	of	an	application,	various	error	conditions	may	arise.	These	error	conditions	may	
have	many	root	causes,	but	fundamentally	they	can	be	categorised	into	three	main	types:	expected	
errors,	unexpected	errors,	and	fatal	errors.	

	

Expected	errors	are	conditions	that	can	be	reasonably	foreseen	by	an	application	developer.	For	
example,	attempting	to	read	a	non-existing	record	from	a	VSAM	file	is	likely	to	be	a	condition	that	
the	application	is	expected	to	handle.	

	

Unexpected	errors	are	conditions	that	may	occur,	but	are	not	normally	expected	to	be	handled	by	
the	application.	For	example,	a	program	may	attempt	to	access	an	element	of	a	Java	array	which	
does	not	exist.	This	probably	represents	a	programming	error,	and	as	a	result,	the	application	is	
likely	to	be	in	an	indeterminate	state.	

	



Fatal	errors	are	the	most	serious	of	all	error	conditions,	and	usually	represent	a	situation	from	which	
an	application	is	unlikely	to	be	able	to	recover.	An	example	of	a	fatal	error	occurring	would	be	if	the	
Java	virtual	machine	failed	to	load	a	Java	class	required	by	an	application.	

	

Error	conditions	in	the	Java	language	are	managed	using	the	exception	mechanism.	

	

If	a	Java	method	encounters	an	error	condition,	then	a	special	Java	object	called	a	Throwable	is	
created	to	capture	the	state	of	the	current	thread	at	the	time	of	the	error,	and	this	object	is	
propagated	to	the	caller	of	the	current	method	–	a	process	known	as	throwing	an	exception.	
Correspondingly,	handling	the	error	condition	is	known	as	catching	an	exception.	A	calling	method	
uses	a	try	keyword	to	indicate	the	scope	of	the	error	handling	logic.	

The	Java	language	specifies	that	the	objects	used	when	propagating	exceptions	must	be	instances	of	
a	type	which	extends	the	Throwable	class.	The	Throwable	class	itself	has	two	direct	subclasses	–	
Exception	and	Error.	There	are	many	sub-classes	of	Exception.	However,	the	RuntimeException	
subclass	is	a	special	case	and	is	not	classified	as	a	checked	exception	as	it	represents	unexpected	
runtime	errors.	

	

Together,	the	checked	exception,	runtime	exception,	and	error	classes	represent	error	conditions	in	
Java	code	that	correspond	to	the	expected,	unexpected,	and	fatal	error	categories	that	we	covered	
earlier.	

In	Java’s	error	handling	mechanism,	expected	errors	extend	the	Exception	class,	and	are	known	as	
checked	exceptions.	

	

The	Java	language	specifies	that	any	method	which	can	throw	a	checked	exception	must	declare	this	
as	part	of	the	method	signature,	using	the	throws	keyword.	

	

Any	Java	code	which	calls	a	method	declared	as	throwing	a	checked	exception	must	either	provide	
logic	to	catch	the	checked	exception,	or	add	the	exception	to	it’s	own	method	signature,	in	order	to	
propagate	the	exception	further	up	the	stack.	

	

The	constraints	on	checked	exceptions	are	enforced	at	compile	time,	and	failure	to	adhere	to	the	
specification	will	result	in	a	compilation	error.	

	

Unexpected	error	conditions	are	represented	by	Java	classes	which	extend	the	Runtime	exception	
class,	and	are	known	as	unchecked	exceptions.	

	

Unchecked	exceptions	are	not	subject	to	the	compile	time	checking	mandated	for	checked	
exceptions,	although	they	can	be	caught	if	required.	



	

Fatal	error	conditions	are	represented	by	Java	classes	which	extend	the	Error	class.	It	is	considered	
poor	programming	practice	to	catch	any	exceptions	that	are	subclasses	of	the	Error	class,	as	these	
rarely	represent	a	condition	from	which	the	application	will	be	able	to	recover.	

	

Now	lets	take	a	look	at	how	CICS	error	handling	is	managed	for	COBOL	and	other	high	level	
languages.		

	

These	languages	that	use	the	EXEC	CICS	API	have	three	choices	when	handling	error	conditions:	on	a	
per-command	basis,	using	a	condition	handler,	or	using	an	abend	handler.	

	

If	a	CICS	command	produces	an	error,	then	it	will	first	try	to	return	a	response	code	to	the	
application	using	the	data	area	supplied	in	the	RESP	parameter	of	the	CICS	command.	

	

If	a	RESP	parameter	has	not	been	supplied,	then	CICS	will	search	for	an	active	condition	handler.	
Condition	handlers	are	registered	in	advance	using	the	EXEC	CICS	HANDLE	CONDITION	command,	
and	perform	some	form	of	application-specific	recovery	operation.	

	

If	no	active	condition	handler	is	found,	then	CICS	will	abnormally	end,	or	abend	the	task.	There	are	
many	types	of	CICS	abends	defined,	each	corresponding	to	a	specific	error	condition,	and	abends	are	
classified	by	their	four-character	abend	code.	

	

When	an	abend	occurs,	CICS	will	search	for	an	active	abend	handler	that	matches	the	generated	
abend.	Similar	to	condition	handlers,	an	abend	handler	routine	is	registered	in	advance	using	an	
EXEC	CICS	HANDLE	ABEND	command.	

	

If	an	active	abend	handler	cannot	be	located,	then	CICS	will	abnormally	terminate	the	current	task,	
which	in	turn	will	rollback	any	uncommitted	updates	to	recoverable	resources	in	the	current	unit	of	
work.	

	

Now	lets	consider	how	CICS	errors	map	to	the	JCICS	API.	

	

The	JCICS	exception	hierarchy	includes	unchecked	exceptions,	checked	exceptions,	and	fatal	errors.		

	



The	key	to	the	mapping	between	CICS	errors	and	the	JCICS	exception	hierarchy	is	understanding	
where	these	exceptions	could	be	thrown,	how	they	map	to	the	CICS	response	codes,	and	what	
action	you	should	take	as	an	application	developer.		

	

	

Let's	start	by	looking	at	checked	exceptions.	

	

Here	we	see	the	key	classes	involved	in	the	JCICS	exception	hierarchy.	Most	JCICS	methods	are	
defined	as	throwing	checked	exceptions,	and	these	checked	exceptions	represent	the	majority	of	
conditions	that	an	application	may	be	expected	to	handle.	

	

Each	error	condition	from	a	CICS	command	is	mapped	to	an	exception,	and	this	exception	is	a	
subclass	of	the	CICS	condition	exception.	

	

	

As	an	example,	the	CICS	command	to	read	an	element	from	a	temporary	storage	queue	may	return	
an	ITEMERROR	condition	to	indicate	the	queue	did	not	contain	the	element	requested.	

	

In	the	JCICS	API,	an	element	is	read	from	the	TSQ	using	the	read	item	method.	This	method	
signature	declares	it	may	throw	(amongst	others)	an	Item	Error	Exception,	which	is	the	JCICS	API	
equivalent	of	the	ITEMERROR	condition.	

	

See	the	query	queue	method	in	the	temporary	storage	resource	sample	class	to	see	how	the	
ITEMERROR	and	QIDERR	conditions	are	handled	as	expected	errors,	while	any	other	error	condition	
results	in	a	failure	of	the	request,	

	

There	are	only	a	few	unchecked	exceptions	in	the	JCICS	API,	and	they	all	extend	the	CICS	runtime	
exception	class.	

	

All	of	these	exceptions	represent	conditions	within	CICS	that	should	not	be	handled	by	an	
application.		

	

Java	code	running	in	CICS	should	not	catch	these	exceptions,	either	explicitly	in	a	catch	block,	or	
implicitly	by	catching	a	superclass	of	these	exceptions.	Instead,	they	should	be	allowed	to	propagate	
out	of	the	Java	environment	and	back	to	CICS,	where	the	unit	of	work	can	be	rolled	back.	

	



Note	included	in	this	list	is	the	AbendException	which	represents	an	abend	of	a	CICS	task,	and	should	
only	be	caught	if	you	wish	to	develop	your	own	abend	handling	routine.	

	

It	important	to	stress	that	having	a	try	block	that	catches	any	superclass	of	the	java	dot	lang	dot	
exception	class	should	not	be	used	when	invoking	the	JCICS	API.	

	

	

It	important	to	stress	that	having	a	try	block	that	catches	any	superclass	of	the	java	dot	lang	dot	
exception	class	should	not	be	used	when	invoking	the	JCICS	API.	

	

<<Note	to	video	team.	You	will	probably	need	to	pause	the	speaker	here	for	a	short	while	–	the	
complexity	of	this	slide	wasn’t	really	thought	about	when	preparing	the	script.	Thankfully	I	am	off-
screen.>>	

	

The	Java	Error	class	represents	a	fatal	error	condition	in	the	JVM	that	should	not	be	caught	by	an	
application.	

	

The	same	applies	to	the	CICS	error	class,	which	extends	java	dot	lang	dot	error.	An	application	
should	not	attempt	to	handle	a	fatal	CICS	error,	but	instead	allow	the	exception	to	propagate	back	to	
the	CICS	environment	to	allow	full	recovery	to	take	place.	

	

If	a	Java	exception	such	as	a	null	pointer	exception	is	allowed	to	propagate	out	of	the	Java	code	and	
back	to	the	JVM	server	runtime,	this	is	generally	surfaced	as	one	of	the	CICS	abends	starting	with	AJ.	

	

Most	commonly,	an	uncaught	exception	will	result	in	an	AJ04	abend,	and	the	current	unit	of	work	
will	be	rolled-back.	

	

It	is	also	possible	for	a	Java	application	to	issue	an	abend	directly,	using	one	of	the	abend	or	force	
abend	methods	in	the	Task	class.		This	is	similar	in	concept	to	the	throwing	of	Java	exception,	as	it	
can	allows	a	CICS	abend	handler	to	take	control	of	error	processing.	

	

The	various	forms	of	the	abend	method	allow	an	application	to	optionally	specify	an	abend	code	or	if	
a	dump	is	required.	

	

The	force	abend	methods	provide	the	same	options	as	their	equivalent	abend	methods,	but	are	
equivalent	to	specifying	the	CANCEL	keyword	on	the	EXEC	CICS	ABEND	command.	Invoking	a	force	



abend	method	will	always	terminate	the	task	abnormally,	and	overrides	any	existing	abend	handlers	
that	have	been	established	for	the	task.	

	

In	our	sample	VsamKsdsFileResource		class	we	use	the	following	try	catch	block	to	handle	CICS	error	
conditions	when	deleting	items	from	a	VSAM	file	

	

	The	RecordNotFoundException	is	a	checked	exception	but	is	a	normal	situation	on	the	initial	
browse,	as	so	can	be	ignored	when	browsing	the	file.	

	

All	other	CICS	condition	exception	are	un	expected,	and	in	this	situation	we	throw	the	JAX-RS	
InternalServerErrorException	which	will	cause	a	HTTP	server	error	to	be	returned	to	the	caller.	

	

This	lecture	has	introduced	the	concept	of	checked	and	unchecked	exceptions	in	Java,	along	with	the	
throwing	and	catching	mechanism	used	to	propagate	the	exception	objects.		

	

We	have	seen	how	the	JCICS	API	maps	CICS	error	condition	values	to	exceptions,	and	how	CICS	
abends	are	processed.	

	

Remember	it	is	acceptable	for	an	application	to	catch	and	handle	CICS	condition	exceptions,	but	it	
strongly	recommended	that	CICS	runtime	exceptions	are	allowed	to	propagate	back	to	the	CICS	
environment.	

	

Finally,	we	looked	at	how	Java	exceptions	are	mapped	to	abends	in	CICS	programs,	along	with	the	
APIs	required	to	issue	abends	directly	from	Java	code.	

	

Thank	you	for	watching.	

	

	

	

Section	6	Lecture	1	

In	this	course,	we	have	extended	our	knowledge	of	Java	development	in	CICS.	

	

We	covered	some	of	the	fundamental	concepts	you	need	to	understand	as	a	Java	developer	when	
interacting	with	CICS,	and	then	used	these	fundamentals	to	invoke	CICS	programs	from	the	Liberty	
environment.	



	

We	then	looked	at	the	use	of	the	JCICS	API	to	access	CICS	resources	including	VSAM	files	and	TSQs,	
and	examined	how	Java	applications	can	participate	in	CICS	unit	of	work	support.	

	

Finally,	we	looked	at	the	concepts	and	practicalities	of	handling	error	conditions	using	Java.		

	

Many	code	samples,	including	the	ones	used	in	this	course,	are	available	on	our	CICS	Dev	git	hub	
site.	

	

This	concludes	our	course	around	extending	a	CICS	web	application	using	JCICS.	

	

Thank-you	for	watching.	

	

	


